Print this Page

Presentation Abstract

Abstract Number:	3103
Presentation Title:	Cyclin E amplification predicts sensitivity of primary Uterine Serous Carcinoma (USC) cell lines to the cdk2 inhibitor CYC065
Presentation Time:	Tuesday, Apr 21, 2015, 8:00 AM -12:00 PM
Location:	Section 9
Poster Board Number:	16
Author Block:	Emiliano Cocco, Stefania Bellone, Salvatore Lopez, Elena Bonazzoli, Federica Predolini, Jonathan D. Black, Alessandro D. Santin. Yale University, New Haven, CT
Abstract Body:	We evaluated the in vitro effectiveness of the cdk2 inhibitor CYC065 on multiple primary chemotherapy-resistant USC cell lines with or without CCNE1 amplification. CCNE1-amplified primary cell lines were significantly more sensitive than wild type USC cell lines to CYC065 in vitro (i.e., IC50: mean±STDV= 61.75±13.22 nM and 103.16± 21.9 nM for CCNE1-amplified USC-ARK-2 and USC-ARK-7 cell lines, respectively and 539.2±182.1 nM for the wild type USC-ARK-4 cell line, p=0.0048). Consistently, low concentrations of CYC065 (i.e., 100 - 300 nM) caused a dose dependent arrest in the G1 phase of the cell cycle specifically in CCNE1-amplified primary USC cell lines. Importantly, CCNE1 knockdown in the USC-ARK-2 cell line resulted in a 9.29-fold increase in the CYC065 IC50 when compared to the MOCK-transfected USC-ARK-2 cell line (p=0.021). Finally, when primary CCNE1-amplified USC cell lines also harboring ERBB2 amplification (50% of CCNE1-amplified USC cell lines) were incubated in vitro with the combination of CYC065 and Herceptin (a monoclonal antibody targeting the product of the ERBB2 gene, HER2/neu), an increased inhibitory effect was reported in the combination treatment on USC-ARK-2, respectively; p=0.014). Together these findings identify CYC065 as a promising drug to be considered alone or in combination in the treatment of patients harboring CCNE1-amplified USC.

American Association for Cancer Research

615 Chestnut St. 17th Floor Philadelphia, PA 19106

Cyclin E amplification predicts sensitivity of primary Uterine Serous Carcinoma (USC) cell lines to the cdk2 inhibitor CYC065

Emiliano Cocco, Stefania Bellone, Salvatore Lopez, Elena Bonazzoli, Federica Predolini, Jonathan D. Black, Alessandro D. Santin Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT;

INTRODUCTION

Uterine serous carcinoma (USC) is an aggressive variant of endometrial cancer. Although it accounts for less than 10% of all endometrial tumors, it causes up to 39% of all endometrial cancer-related deaths. USC, referred to as a Type II endometrial cancer, is characterized by a high-grade, complex histology and carries a poor prognosis as it is often spread beyond the uterine corpus at the time of diagnosis¹. Thus, there is a dire need for a better understanding of its molecular response to potential therapies in order to develop novel, target-specific and more effective therapeutic strategies against this rare subset of endometrial cancer.

We have recently evaluated the genetic landscape of a large number of USC and we found that alterations in the cell cycle pathway occurred in up to 88% of these tumors. In particular the amplification of the gene encoding for Cyclin E1 (CCNE1), an activator of Cyclin-dependent kinase 2 (Cdk2), was reported in 48% of the tumor samples.

Α

Α

Here, we have evaluated the effectiveness of the Cyclindependent kinase 2 (Cdk2) and 9 (Cdk9) inhibitor CYC065 (Cyclacel Ltd, Dundee, UK. Saladino et al. AACR2015 Abs#1650) in vitro and in vivo on multiple CCNE1-amplified primary chemotherapy-resistant USC cell lines and USCderived xenograft mouse models.

RESULTS and CONCLUSION

CCNE1-amplified primary USC cell lines were significantly more sensitive than wild type to CYC065 in vitro (i.e., IC50: mean±STDV= 124.12±57.8 and 415±117.5 nM for CCNE1amplified and wild type cell lines, respectively, p=0.0003). Consistently, low concentrations of CYC065 (i.e., 100 nM) caused an arrest in the G1 phase of the cell cycle specifically in CCNE1-amplified primary USC cell lines. Importantly, CCNE1 knockdown resulted in a 9.29 fold increase in the IC50 (p=0.021). In vivo data showed that the treatment of CCNE1amplified USC-derived xenografts with CYC065 significantly reduced tumor growth compared to vehicle treated mice (p=0.012 starting at day 9 of the treatment). Importantly, when CCNE1-amplified primary USC cell lines also carrying hyperactivation of the PI3CA/AKT/mTOR-signaling pathway (50% of CCNE1-amplified USC cell lines) were incubated in vitro with the combination of CYC065 and Herceptin (a monoclonal antibody targeting the product of the c-erBB2 gene, HER2/neu) or CYC065 and the PIK3CA inhibitor Taselisib, a synergistic effect was reported in the combination treatments when compared to each of the single drugs (CI=ED50/ED75/ED90<1). Consistently, when the same cell lines were used to establish xenografts in mice, combination treatments were significantly more effective in reducing tumor growth compared to the single agents (p < 0.05).

Together these findings identify CYC065 as a promising drug to be considered alone or in combination in the treatment of patients harboring CCNE1-amplified USC.

CCNE1 amplification and mRNA expression in USC

Figure 1.A: CNV analysis of 25 USC matched samples (normal and tumor tissue from the same patient) showing genetic somatic amplifications and deletions. CCNE1 amplification was found in 48% of the samples. B: RT-PCR data on the 25 USC samples analyzed for CNV. CCNE1-amplified USC express significantly higher levels of CCNE1 mRNA compared to wt tumors (p=0.00113).

CCNE1 expression in selected Primary USC cell lines

Figure 2. CCNE1 expression levels evaluated by RT-PCR (A) and Western Blot (B) on selected primary USC cell lines. CCNE1-amplified USC express significantly higher levels of CCNE1 mRNA and protein than wt USC cell lines (p<0.05). C: Representative CCNE1 immunostaining images of a CCNE1-amplified and a wt USC cell line.

Figure 3. A: in vitro sensitivity of selected primary USC cell lines to the Cdk2 inhibitor CYC065. CCNE1-amplified USC cell lines are significantly more sensitive than wt USC cell lines to CYC065 (IC50: mean±STDV= 124.12±57.8 and 415±117.5 nM for CCNE1-amplified and wt cell lines, respectively, p=0.0003). B: Representative dose-response curves of CCNE1-amplified (upper panel) and wt (lower panel) USC cell lines treated with scalar doses (ranging from 100 to 600nM) of CYC065 for 72 hours.

CYC065 specificity and in vivo activity as single agent

Figure 4.A: cell cycle analyses of CCNE1-amplified (ARK-2 and ARK-7) and wt (ARK-4) cell lines treated with 100nM of CYC065 for 48 hours. CYC065 caused an arrest in the G1 phase of the cell cycle specifically in CCNE1-amplified USC. B: Knockdown of CCNE1 resulted in a 9.29 fold increase in the IC50 (p=0.021). C: The daily (7d/week)*3 treatment of CCNE1-amplified USC-derived xenografts with 22.5mg/kg of CYC065 significantly reduced tumor growth compared to vehicle treated mice (p=0.012 starting at day 9 of the treatment).

CYC065 in combination with Herceptin on CCNE1/c-erbB2 amplified USC

Figure 5.A: *in vitro* combination treatment of USC-ARK-2 cell line (CCNE1/c-erbB2 amplified) with Herceptin and CYC065. Combination of drugs has a synergistic effect on cell growth inhibition (CI calculated using CompuSyn software=ED50/ED75/ED90<1). B: in vivo treatment of USC-ARK-2-derived xenografts with Herceptin (1d/week) *3 and CYC065 (7d/week)*3 significantly reduced tumor growth compared to each of the single drugs (Herceptin versus combo p=0.0212 at day 15; CYC065 versus combo p=0.016 at day 8).

CYC065 in combination with Taselisib on CCNE1-amplified PIK3CA-mutated USC

Figure 6.A: *in vitro* combination treatment of USC-ARK-1 cell line (CCNE1-amplified PI3KCA mutated) with Taselisib and CYC065. Combination of drugs has a synergistic effect on cell growth inhibition (Cl calculated using CompuSyn software=ED50/ED75/ED90<1). B: in vivo treatment of USC-ARK-1-derived xenografts with Taselisib (5d/week)*3 and CYC065 (7d/week)*3 significantly reduced tumor growth compared to each of the single drugs (Taselisib versus combo *p*=0.043 at day 10: CYC065 versus combo *p*=0.037 at day 4).

In vitro efficacy of CYC065 on primary USC cell lines

Aknowledgements: This work was supported in part by R01 CA154460-01 and U01 CA176067-01A1 grants from NIH, the Deborah Bunn Alley Foundation, grant RF-2010-2313497 del Ministero della Salute, the Tina Brozman Foundation and the Guido Berlucchi Foundation to ADS. This investigation was also supported by NIH Research Grant CA-16359 from the NCI.