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Clinical benefits from trastuzumab and other anti-HER2 therapies
in patients with HER2 amplified breast cancer remain limited by
primary or acquired resistance. To identify potential mechanisms
of resistance, we established trastuzumab-resistant HER2 amplified
breast cancer cells by chronic exposure to trastuzumab treatment.
Genomewide copy-number variation analyses of the resistant cells
compared with parental cells revealed a focal amplification of
genomic DNA containing the cyclin E gene. In a cohort of 34 HER2*
patients treated with trastuzumab-based therapy, we found that
cyclin E amplification/overexpression was associated with a worse
clinical benefit (33.3% compared with 87.5%, P < 0.02) and a lower
progression-free survival (6 mo vs. 14 mo, P < 0.002) compared
with nonoverexpressing cyclin E tumors. To dissect the potential
role of cyclin E in trastuzumab resistance, we studied the effects of
cyclin E overexpression and cyclin E suppression. Cyclin E overex-
pression resulted in resistance to trastuzumab both in vitro and
in vivo. Inhibition of cyclin E activity in cyclin E-amplified trastuzu-
mab resistant clones, either by knockdown of cyclin E expression
or treatment with cyclin-dependent kinase 2 (CDK2) inhibitors, led
to a dramatic decrease in proliferation and enhanced apoptosis.
In vivo, CDK2 inhibition significantly reduced tumor growth of
trastuzumab-resistant xenografts. Our findings point to a causa-
tive role for cyclin E overexpression and the consequent increase in
CDK2 activity in trastuzumab resistance and suggest that treat-
ment with CDK2 inhibitors may be a valid strategy in patients
with breast tumors with HER2 and cyclin E coamplification/over-
expression.

ER2 is a member of the epidermal growth factor recep-

tor (EGFR) family of receptor tyrosine kinases, which in-
cludes EGFR itself, HER2, HER3, and HER4. Homo- or
heterodimerization of these receptors results in phosphorylation
of residues in the intracellular domain and consequent re-
cruitment of adapter molecules responsible for the initiation of
several signaling pathways involved in cell proliferation and sur-
vival (1, 2). Approximately 20% of breast cancers exhibit HER2
gene amplification/overexpression, resulting in an aggressive tu-
mor phenotype and reduced survival (3, 4). Therapy of HER2*
breast cancer with anti-HER?2 agents, including monoclonal anti-
bodies and small molecule tyrosine kinase inhibitors, has markedly
improved the outcome of this disease (5). Trastuzumab, a re-
combinant humanized monoclonal antibody that binds to the ex-
tracellular domain of HER?2, improves survival in patients with
HER2™ breast cancer, in both the metastatic (6, 7) and adjuvant
settings (8). The overall antitumor activity of trastuzumab is due
to a combination of mechanisms, including inhibition of ligand-
independent HER2 dimerization (9), HER2 down-regulation (10,
11), that lead to disruption of HER2-dependent PI3K/Akt sig-
naling (12) and induction of G1 arrest through stabilization of the
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CDK inhibitor p27 (13). In addition, trastuzumab also medi-
ates antibody-dependent cell-mediated cytotoxicity (ADCC) (14).

Despite the survival gains provided by anti-HER?2 therapies,
patients with advanced HER2* breast cancer frequently display
primary resistance to trastuzumab-based therapy, and even if
they initially respond, acquired resistance invariably ensues at
some point. The magnitude of the resistance problem has pro-
mpted efforts at identifying the underlying mechanisms. A num-
ber of mechanisms of resistance have been described to date in-
cluding hyperactivation of the phosphatidylinositol-3-kinase (PI3K)
pathway (12, 15), coexpression of the truncated p9SHER2 re-
ceptor (16), heterodimerization with other growth factor recep-
tors (17-19), and loss of HER?2 expression itself (20). Some, but
not all, of these mechanisms have been shown to play a role in the
clinic (12, 15, 16, 20). However, the described mechanisms are
not prevalent enough to justify the high frequency of resistance to
anti-HER?2 agents. To identify additional mechanisms, we estab-
lished trastuzumab-resistant HER2 amplified breast cancer cells
by chronic exposure to increasing trastuzumab concentrations.
Using these cells as an initial screening tool, we took an unbiased
approach based on comparative genomewide copy-number analy-
sis. Our studies revealed the presence of acquired amplification
of the cyclin E gene in trastuzumab-resistant cells. We demon-
strate the clinical relevance of this finding showing that cyclin E
amplification/overexpression, occurring in a substantial portion of
HER2" breast cancer patients, results in a lower clinical benefit
rate (CBR) and progression-free survival (PFS) from trastuzumab-
based therapy.

High cyclin E expression has been proposed as a marker of
poor clinical outcome in breast cancer (21). Furthermore, it has
been recently shown that cyclin E levels decrease upon HER2
down-regulation and HER?2 inhibition, suggesting that HER2
regulates cyclin E function (22). In a reversal of roles, our study
now shows that cyclin E exerts a control over HER?2 function as
demonstrated by cyclin E overexpression resulting in resistance to
trastuzumab. Our results are indicative of a direct role of cyclin E
in trastuzumab resistance and suggest that treatment with CDK2
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inhibitors should be considered in patients whose tumors display
cyclin E amplification/overexpression.

Results

Generation and Characterization of Trastuzumab-Resistant Cell Lines.
First, we generated trastuzumab-resistant clones by chronically
exposing the HER2 amplified breast cancer cell line BT474 to
increasing concentrations of trastuzumab for over 18 mo in vitro.
BT474 cell clones resistant to the antiproliferative effects of
trastuzumab (IC50 > 1 pM, ~100-fold higher than control BT474
cells) were identified. As shown in Fig. 14, the proliferation of a
representative BT474 trastuzumab-resistant cell line (BT474R)
is undisturbed in the presence of increasing concentrations of
trastuzumab. An emerging body of evidence suggests that cells
cultured in monolayer may respond differently to trastuzumab
than cells grown in 3D cultures (23, 24). Thus, we tested the
capacity of our resistant cells to form tumors in the presence of
trastuzumab. To do this testing, we orthotopically injected in
vitro resistant clones in immunodeficient mice and treated the
animals twice weekly with trastuzumab (10 mg/kg). Where ap-
propriate, we show results from one representative in vitro and in
vivo trastuzumab-resistant cell line, referred to from here on as
BT474R and BT474R2, respectively (Fig. 14).

We then performed genomewide copy number analyses of
both BT474R and BT474R2 and compared them to parental
control cells. With this approach, we identified two regions of the
cell genome with copy-number alterations, 19q (gain) and 14q
(loss). The focal deletion on 14q contains two transcripts
GPR65 and GALC, whereas the amplification at 19q contains
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seven genes, two of which, UQCRFS1 and CCNEI1, have pre-
viously been identified as being amplified in breast cancer (Fig.
1B) (25-27). We focused our work on CCNE]I, the gene encoding
cyclin E, because of its known role in the G1/S transition of the
cell cycle (28). Our hypothesis was that the increased levels of
cyclin E (and consequent increase in CDK2 activity) observed in
our resistant cells could be responsible for the lack of trastuzumab-
mediated G1 arrest, which would in turn result in the decreased
sensitivity of these cells to trastuzumab.

Analysis by Western blot confirmed that both full-length and
low molecular weight (LMW) isoforms of cyclin E were overex-
pressed in our trastuzumab-resistant cell lines (Fig. 1C). Histo-
logical analyses of BT474R2 cells further confirmed the increase
of both nuclear and cytoplasmic expression of cyclin E (Fig. S1).
Overexpression of cyclin E in the resistant cells was accompanied
by enhanced cyclin E-CDK?2 kinase activity, as shown by higher
basal phosphorylation of the retinoblastoma protein (RB), a di-
rect target of the cyclin E-CDK2 complex (Fig. 1C). In addition,
whereas trastuzumab treatment of BT474 parental cells resulted
in decreased RB phosphorylation, no change in RB phosphory-
lation was observed in the resistant cell lines. As expected, p27
levels increased in parental cells treated with trastuzumab com-
pared with untreated cells. In contrast, BT474R and BT474R2
cells displayed high basal levels of p27, which did not change with
the addition of trastuzumab (Fig. 1C).

As mentioned, a number of mechanisms that limit the efficacy
of trastuzumab-based therapy in HER2* tumors have been pre-
viously identified. We studied whether any of these mechanisms
was present in the resistant BT474R and BT474R2 cells. First,
resistant cells retained high levels of HER2 expression and, as
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Fig. 1. Generation and characterization of trastuzumab-resistant cell lines. (A) Trastuzumab-sensitive breast cancer cell line BT474 was made resistant by
persistent exposure to increasing concentrations of trastuzumab (Results). BT474 and BT474R cells were treated with trastuzumab at the indicated con-
centrations for 6 d and proliferation was measured. BT474R cells were subsequently injected s.c. in nude mice and animals were treated twice weekly with 10
mg/kg trastuzumab. Resistant tumors were excised and new trastuzumab-resistant cell lines (BT474R2) established. (B) Genomewide copy-number analyses of
BT474R cells compared with parental controls. Gain of region 19912 (Left) and loss of region 14q31 (Right). The amplification on 19q12 locus encodes the
gene for cyclin E1 (CCNE1). Genetic analysis of BT474R2 cells gave identical results. (C) Western blot analyses of BT474 and BT474R cells. Cells were exposed to
100 nM trastuzumab for 48 h. Whole-cell extracts were analyzed with the indicated antibodies.
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in the parental cells, trastuzumab increased HER2 phosphor-
ylation while concomitantly reducing the expression of HER2
(Fig. 1C). Basal phosphorylation of AKT, a read-out of PI3K
signaling, was not enhanced in the resistant cells, suggesting that
our trastuzumab-resistant cell lines do not exhibit PI3K pathway
hyperactivation. Furthermore, no changes in IGF1R phosphory-
lation were observed in the resistant cells, discarding an increase
of HER2/IGFIR dimerization in these cells (Fig. 1C). At the
same time, these analyses revealed that all of the in vitro and in
vivo trastuzumab-resistant clones exhibited similar patterns of
expression of these proteins, indicating little clonal variation
among the resistant cells. In sensitive cells, trastuzumab admin-
istration results in a cell cycle blockade at the level of G1, which
has been shown to occur due to a trastuzumab-induced stabili-
zation of the CDK2 inhibitor p27(13, 29). Our parental trastu-
zumab-sensitive cells displayed the expected G1 blockade upon
administration of trastuzumab (Fig. S2). On the other hand, un-
der identical conditions, resistant cells failed to undergo a G1
arrest, an indication that resistant cells maintain cell cycle pro-
gression in the presence of trastuzumab despite displaying high
levels of p27 (Fig. S2).

Cyclin E Amplification/Overexpression and Trastuzumab Resistance in
Breast Cancer Patients. To assess the potential clinical relevance of
our findings, we analyzed a cohort of patients with HER2 ampli-
fied tumors that displayed cyclin E amplification and/or over-
expression and that had been treated with trastuzumab-containing
therapy at our institutions. Tumors were scored as cyclin E posi-
tive if the FISH ratio cyclin E/chromosome 19 was higher than 1.5
(Fig. 24) or when the H score for nuclear cyclin E staining was
higher than 30 (Fig. 2B). We chose these cutoff values because
they corresponded to the levels of cyclin E amplification and nu-
clear staining encountered in our resistant cells (Fig. S1). Our
cutoff values are similar to those previously adopted by other
groups (30, 31). The levels of cyclin E amplification and over-
expression in breast tumors are lower than those described for
HER?2 (breast cancer) or MET (lung cancer) genes. The most
likely explanation is that excessive levels of cyclin E would lead to
cell death or senescence (32, 33).

In our cohort of 55 cases of HER2 amplified breast tumors, we
found an incidence of cyclin E amplification/overexpression of
35%. To corroborate these findings, we explored the frequency
of cyclin E overexpression/amplification in several publicly avail-
able microarray data sets (for a total of 728 tumors). Using the
MDACCI133 data set (34), overexpression of the CCNE1 gene
was identified in 18-30% (6-10/33) of the HER2™" cases (Fig.
S3A). Interestingly, an association between ER negativity and high
expression of cyclin E gene was also evident in this analysis (Fig.
S3B). To assess cyclin E amplification, we analyzed a combined
aCGH data set of 595 breast cancers (35) and estimated that am-
plification of the CCNE1 chromosomal region occurs in ~20% of
the cases with HER2 amplification (Fig. S3C). Our findings are in
line with previously published data in breast cancer (36-38).

We then identified and analyzed a cohort of 18 HER2*
patients who scored positive for cyclin E and that had received
first line therapy with a trastuzumab-containing regimen in the
advanced disease setting for whom annotated clinical data were
available. Clinical benefit rate from trastuzumab, defined as
patients having a complete response, partial response, or stable
disease >6 mo, was observed in only five patients (33.3%, Fig. 2C)
and a progression-free survival of 6 mo (Fig. 2D). We analyzed in
parallel a similar cohort of 16 HER2™ patients that scored neg-
ative for cyclin E that had also been treated with first-line tras-
tuzumab therapy. These patients had a clinical benefit rate of
87.5% and a progression-free survival time of 14 mo (Fig. 2 C and
D). In summary, cyclin E amplification/overexpression was asso-
ciated with a worse clinical benefit (33.3% compared with 87.5%,
P < 0.02) and a lower progression-free survival (6 mo vs. 14 mo,
P < 0.002). The observed clinical benefit rate in cyclin E ampli-
fication/overexpression was also lower from the expected ~60%
clinical benefit in a similar population of patients with HER2
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Fig. 2. Cyclin E amplification/overexpression in HER2" breast tumors and
clinical trastuzumab resistance. (A) FISH analyses showing a representative
case of a patient with no amplification of CCNET (patient 1) and with am-
plification of CCNET (patient 2). (B) Representative immunohistochemistry
showing a tumor with negative nuclear staining for cyclin E (patient 1) and
a tumor with positive nuclear staining for cyclin E (H score > 30, patient 2).
(C) Clinical benefit rate of cyclin E positive (green, n = 18) vs. cyclin E neg-
ative (blue, n = 16) patients treated with trastuzumab-based therapy. Bre-
slow test: P = 0.02. (D) PFS of cyclin E positive (green, n = 18) vs. cyclin E
negative (blue, n = 16) patients. Median PFS was 4 mo for cyclin E positive
patients and 14 mo for cyclin E negative patients. Breslow test: P = 0.002.

amplified tumors and unselected for cyclin E expression (5-7, 20).
We also studied whether cyclin E amplification/overexpression
coexisted with other potentially clinically relevant mechanisms of
resistance. In 26 tumor samples (10 cyclin E positive and 16 cyclin
E negative), additional slides were available and we were able to
evaluate the presence of p9SHER?2 and the expression of PTEN.
Low PTEN expression (H score < 60) was found in 4 cyclin E
positive tumors and the presence of truncated forms of HER2
(p9SHER?2) was found in 3 cyclin E positive tumors. In two cases,
cyclin E amplification, low PTEN expression, and presence of
p9SHER? coincided, whereas in five cases, cyclin E amplification
was the only alteration present. Our results suggest that, although
there is some coexistence of potential mechanisms of resistance,
frequently cyclin E overexpression is the only one present of the
ones that have been shown to be clinically relevant.

Cyclin E Overexpression Is Responsible for Trastuzumab Resistance.
To address whether cyclin E amplification/overexpression results
acquired resistance to trastuzumab, we tested the effects of mod-
ulating cyclin E expression. Ectopic expression of cyclin E in pa-
rental BT474 cells significantly decreased the sensitivity of these
cells to trastuzumab (Fig. 3 4 and B). Conversely, down-regulation
of cyclin E by small interfering RNA (siRNA) resulted in a signifi-
cant growth inhibition in BT474R cells, whereas only moderate
effects were observed in parental BT474 cells (Fig. 3 C and D).
Furthermore, BT474R cells were slightly more sensitive than con-
trol cells to the antiproliferative effects induced by the combination
of cyclin E ablation and trastuzumab treatment. Collectively, these
data indicate that cyclin E overexpression accounts for the observed
resistance phenotype in BT474R trastuzumab-resistant cells.

Trastuzumab-Resistant Cells Are Sensitive to CDK2 Inhibition. The

binding of cyclin E to its cognate partner CDK2 allows the cells
to progress through the G1 phase of cell cycle. An excess of
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Fig. 3. BT474 and BT474R sensitivity to in vitro cyclin E manipulation. (A)
Quantification of crystal violet staining of parental BT474 cells infected with
empty vector control (BT474) compared with two independent pools stably
expressing full-length cyclin E (BT474-A and BT474-B). Cells were treated for
8 d with 100 nM trastuzumab. Experiments were performed in triplicate.
(Student’s t test; *P = 0.001, **P = 0.001). (B) Western blot analyses showing
cyclin E overexpression in BT474-A and BT474B. (C) Quantification of crystal
violet staining of BT474 or BT474R cells upon siRNA-mediated knockdown of
cyclin E (siCCNE1) or scrambled siRNA control (SCB). Cells were treated with
10 nM trastuzumab for 8 d. Experiments were performed in triplicate.
(Student’s t test; *P = 0.013, **P = 0.0003, ***P = 0.15) (D) Western blot
analyses of BT474 and BT474R cells transfected with siRNA-targeting cyclin E
or control. Whole-cell extracts were probed with indicated antibodies.

cyclin E may therefore render cells independent from the cell
cycle arrest effects of trastuzumab. As such, we reasoned that
these cells were likely to be highly dependent on CDK2 activity.
To stress this hypothesis, we used the selective CDK2 inhibitor
CYCO065 (a 2,6,9-trisubstituted purine analog; Cyclacel), an
orally available ATP competitive inhibitor of CDK2 kinase ac-
tivity. As expected, inhibition of CDK2 kinase activity with
CYCO065 resulted in a substantial decrease of cell growth/viability
in the BT474 parental cell line. However, the cyclin E amplified
BT474R cells showed an even higher sensitivity to the CDK2

inhibitor, the effects of which were only marginally improved by
the addition of trastuzumab (Fig. 44). The cell cycle profiles of
cells treated with trastuzumab, CYC065, or the combination
were analyzed 48 h after treatment using flow cytometry. As
previously shown in Fig. 1C, trastuzumab had no effect on the
cell cycle distribution of BT474R cells. However, treatment with
CYC065 induced a marked G1 arrest, which was not further
enhanced by cotreatment with trastuzumab. Importantly, in pa-
rental BT474 cells, CYCO065 only induced a moderate G1 arrest,
inferior to the effects obtained with trastuzumab alone (Fig. S4).

CDK2 inhibition was effective at reactivating RB function
(decreasing protein phosphorylation) in both BT474 and
BT474R cells (Fig. 4B). Phosphorylation of T187 on p27 by
CDK?2 results in ubiquitination and degradation of p27. Despite
the expected decrease in T187 phosphorylation caused by the
treatment with CYCO065 (Fig. S54), the total levels of p27
markedly decreased in both parental and resistant cell lines (Fig.
3B). This phenomenon appears to be, at least in part, protea-
some dependent because coadministration of the proteosome
inhibitor MG132 prevented p27 loss (Fig. S5B).

In addition to cell cycle arrest, treatment with CYC065 in-
duced gross apoptosis in BT474R cells as determined by accu-
mulation of cells in sub-G1 and annexin V staining (Fig. 3 C and
D). In contrast, parental cells treated with CYC065 exhibited
only a minor increase in sub-G1 and annexin V staining. In both
sensitive and resistant cells, the addition of trastuzumab did not
significantly increase cell death. This difference in susceptibility
to apoptosis was confirmed by the levels of cleaved caspase 3,
a known proapoptotic marker that significantly increased only in
BT474R cells following exposure to CYC065 (Fig. 4B).

To explore the consistency of our findings in an in vivo model,
we evaluated tumor growth inhibition of BT474R2-derived
xenografts in response to trastuzumab, CYC065, or the combi-
nation (Fig. 4E). Therapy was started when tumors were well
established (~300 mm®). As a defining feature, BT474R2 xeno-
grafts responded poorly to trastuzumab treatment. Conversely,
treatment with CYC065 alone or in combination with trastuzu-
mab significantly decreased tumor growth. Histological analyses
of CYCO065-treated tumors showed reduced expression of
phosphorylated RB compared with control and trastuzumab-
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0.0019 vs. trastuzumab; **P = 0.00085 vs. trastu-
zumab on day 12. The experiment was repeated
two times with similar results.
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treated mice (Fig. S6), suggesting that this parameter could be
used as a molecular biomarker of CDK2 inhibition in vivo.

Taken together these results demonstrate that our trastuzumab-
resistant cells display exquisite sensitivity to CDK2 inhibitors, an
indication of acquired dependency to the cyclin E-CDK2 sig-
naling pathway.

Discussion

Primary and secondary resistance to anti-HER2 agents is a major
limitation in the current treatment of patients with HER2*
breast tumors. The identification of critical mechanisms of re-
sistance to anti-HER?2 therapies could lead to the design of
successful strategies to circumvent them. Following this line of
thought, we established trastuzumab-resistant cells by chronic
exposure to trastuzumab in vitro (BT474R) and further sub-
selection by prolonged trastuzumab exposure in vivo (BT474R2).
This approach to develop resistant cells is remarkably similar to
what occurs in the clinic, where acquired resistance arises fre-
quently in the setting of prolonged administration of trastuzumab.
Using an unbiased approach based on comparative genomewide
copy-number analyses, we found that resistant cells had an am-
plified region in 19q where CCNEI, the cyclin E encoding gene,
resides and confirmed that these cells had cyclin E amplification/
overexppresion. Cyclin E and its associated CDK2 are essential for
cellular progression through the G1 phase of the cell cycle and
initiation of DNA replication. On the other hand, the antipro-
liferative effects of trastuzumab are mediated by accumulation of
cells in the G1 phase, which can be accompanied by decreased
cyclin E-associated kinase activity (39). An excess of cyclin E may
therefore render cells independent from trastuzumab-mediated
cell cycle arrest.

We provide evidence that overexpression of cyclin E and cor-
responding CDK2 activity is sufficient to counteract the anti-
proliferative effects of trastuzumab. Previous studies have also
described an oncogenic role for cyclin E (40, 41). In fact, cyclin E
and LMW cyclin E are frequently overexpressed in breast cancer,
resulting in poor overall survival (21). Recently it has also been
shown that cyclin E and LMW cyclin E overexpression confers
a worse prognosis in patients with HER2™" breast cancer that had
not received therapy with trastuzumab (22).

Here, we demonstrate that cyclin E amplification/overexpression
results in a decreased sensitivity to trastuzumab (Fig. 5). Thus, in
addition to being a prognostic factor in HER2" breast cancer,
cyclin E may also be a predictive factor of poor response to anti-
HER?2 therapy. We fully acknowledge the retrospective nature of
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Fig. 5. (A) In unperturbed conditions HER2-dependent activation of AKT
inhibits the cyclin E/CDK2 inhibitor p27. (B) Inhibition of HER2 suppresses
AKT activity leading to increased levels of p27 and inhibition of the cyclin E/
Cdk2 activity. (C) Trastuzumab-resistant cells harboring an amplification of
cyclin E renders these cells insensitive to the negative regulation by p27.
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our clinical findings and that our findings need to be prospectively
validated in a larger cohort of patients.

This type of drug-mediated cell adaptation differs substantially
from the previously described mechanisms of resistance to anti-
HER agents. For example, in a similar study conducted in lung
cancer, the amplification of MET protooncogene has been de-
scribed to mediate resistance to anti-EGFR tyrosine kinase inhib-
itors. In this case, however, concurrent inhibition of both EGFR
and MET upstream receptors was required to achieve down-
regulation of the PI3K/AKT pathway and subsequent growth in-
hibition. In our case, loss of cyclin EF-CDK?2 activity alone, either by
chemical inhibition of CDK2 or knockdown of cyclin E expression,
dramatically suppressed the proliferation potential of trastuzumab-
resistant cells compared with their parental counterparts. It is
therefore tempting to speculate that chronic exposure to trastu-
zumab with consequent cyclin E amplification/overexpression
renders resistant cells addicted to cyclin E.

Although a functional cyclin E-CDK2 activity appears to be
critical for both parental and trastuzumab-resistant cells, its in-
hibition leads to different phenotypic outcomes. Whereas ex-
posure to a CDK2 inhibitor moderately increased cell death in
BT474 parental cells, identical treatment conditions resulted in
massive apoptosis in cyclin E overexpressing cells. Thus, the
enhanced cyclin E-CDK2 kinase activity present in our trastu-
zumab-resistant cells, witnessed by the higher basal phosphory-
lation of RB, may be essential for the suppression of proapoptotic
signals. This finding opens up a window of opportunity because
cyclin E amplified HER2™" breast cancers refractory to trastuzu-
mab may be exquisitely sensitive to CDK?2 inhibition.

An open question is whether CDK2 inhibition should be given
alone or in combination with trastuzumab in cyclin E amplified
patients after relapse to first line trastuzumab-based therapy.
Our in vitro data would suggest that the combination may not be
necessary but we acknowledge that the dual approach may still
benefit from the immune-mediated trastuzumab cytotoxicity in
the clinical setting.

Intriguingly, we observed constitutively elevated p27 levels in
our cyclin E amplified trastuzumab-resistant cell lines. These
findings diverge with previous data originated from using pools
of SKBR-3 cells with acquired resistance to trastuzumab in vitro
(42). In this model, Nahta et al. showed increased CDK2 activity
of the resistant cells but accompanied by decreased levels of p27.
This discrepancy may be explained, at least in part, by the sub-
stantial differences existing between their and our models. Nahta
et al. (42) used a different cell line and exposed it to trastuzumab
for a shorter period (3 mo) before selecting and characterizing
the resistant pools. Moreover, trastuzumab treatment was cyto-
toxic in their parental SKBR-3 cells, whereas, in our parental
BTA474 cells, trastuzumab was mainly cytostatic.

In an earlier work, trastuzumab-induced p27 up-regulation
was found to be long lasting and irreversible (43). Maybe, in our
case, the protracted exposure to trastuzumab led to increased
steady-state levels of p27 that, over time, acted as a selection
pressure for cyclin E overexpressing cells. On the other hand, the
high levels of p27 encountered in our resistant cells could occur
as a consequence of a yet undefined adaptative response to ab-
normally high CDK2 activity. In favor of the latter is a previous
report that described increased p27 levels in transgenic mice
overexpressing cyclin E (44).

Pharmacological inhibition of CDK2 was found to trigger p27
down-regulation in our model. This finding is surprising, given
that p27 degradation is known to be mediated by CDK2 kinase
activity (45). However, these findings are consistent with pre-
vious work describing p27 down-regulation in response to the
CDK inhibitor roscovitine (46). Although the mechanistic details
of this paradox need further biochemical characterization, we
found that inhibition of CDK2 affects proteasome-dependent
p27 stability.

In conclusion, our work proposes that cyclin E amplification/
overexpression leads to trastuzumab resistance. These tumors
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may be exquisitely sensitive to CDK2 inhibitors, an observation
that could have therapeutic implications.

Materials and Methods

Cell Culture, Transfections, and Proliferation Analyses. BT474 cells were
obtained from ATCC. Cells were maintained in Dulbecco’s modified Eagle
medium/Ham F12 1:1 (DMEM/F12) supplemented with 10% FBS and 2 mM
L-glutamine (Life Technologies) at 37 °C in 5% CO,. Trastuzumab-resistant
BT474R and BT474R2 cells were maintained in 1 pM of trastuzumab. Cells
were infected as previously described (47). Trastuzumab (Herceptin; kindly
provided by F. Hoffmann-La Roche, Basel, Switzerland) was dissolved in
sterile apyrogen water and stored at 4 °C. CYC065 (Cyclacel) was dissolved in
dimethyl sulfoxide (DMSO) and stored at 4 °C.

Cell growth and cell cycle analyses were performed as previously de-
scribed (16, 47).

Protein Extraction and Western Blot. Proteins were extracted with 20 mM Tris-
HCl pH 7.4, 137 NaCl, 2 mM EDTA, 10% glycerol, 1% Nonidet P-40 supple-
mented with 25 mM NaF, 50 pg/mL leupeptin, 50 pg/mL aprotinin, 0.5 mM
orthovanadate, and 1 mM phenylmethylsulfonyl fluoride. Protein extracts
were resolved by SDS-polyacrylamide gel electrophoresis (PAGE) and trans-
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ferred to nitrocellulose membranes. Protein detection was performed as
previously described (11).

Reagents, SNP Array, Tumor Xenografts, Inmunohistochemical (IHC) Staining
and Evaluation, Fluorescence in Situ Hybridization and Interpretation, and
Patients. See S/ Materials and Methods.

Statistical Analysis. Associations between CBR and cyclin E status in HER2*
breast cancer patients were studied by contingency tables and analyzed
by Fisher’s exact test. Results were considered to be statistically significant
when P value was <0.05. The Breslow test in Kaplan-Meier survival anal-
ysis was performed because our data did not fulfill the proportional
hazards assumption. All statistical analyses were performed using the
SPSS 15.0 statistical software. For in vitro assays and nude mice experi-
ments, comparisons between groups were made using a two-tailed
Student’s t test. Differences for which P was <0.05 were considered sta-
tistically significant.
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